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Abstract
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“Human beings are not perfectly designed decision makers [...] despite all these limitations,
when our imperfect judgements are aggregated in the right way, our collective intelligence is
often excellent.”

—James Surowiecki, The Wisdom of Crowds

“In crowds it is stupidity and not mother-wit that is accumulated.”

—Gustave Le Bon, The Crowd: A Study of the Popular Minds

1 Introduction

Information exchange is ubiquitous in the modern age. Through channels like social media,
professional networks, and online forums, individuals continually share information and learn
from one another. This phenomenon, known as social learning, raises critical questions: Does
social learning facilitate correct decisions, or can it lead to worse outcomes?

In the literature, two opposing views exist regarding the effect of social learning. The
first perspective warns that social learning can lead to suboptimal outcomes. For instance,
in sequential social learning, society may take an incorrect action and form an informational
cascade even if all individuals are rational Bayesian learners (Banerjee, 1992; Bikhchandani
et al., 1992). The second perspective, however, posits that social learning can effectively
aggregate information and achieve the wisdom of crowds. Studies have shown that Bayesian
social learning can achieve efficient information aggregation under moderate restrictions
on learning environments such as signal and network structures.1 Furthermore, even if
individuals are not Bayesian learners, information can still be efficiently aggregated under
heuristic learning rules, such as when beliefs are aggregated using a weighted average rule
(Golub and Jackson, 2010; Jadbabaie et al., 2012).

The results on non-Bayesian social learning demonstrate the possibility of efficient in-
formation aggregation with boundedly rational individuals, which aligns closely with the
original idea of the wisdom of crowds.2 However, the literature mostly assumes that individ-
uals accurately interpret their information. Albeit being a natural benchmark, it overlooks

1For example, Smith and Sørensen (2000) show that in sequential social learning, information cascades
are non-generic properties; they show that correct learning can occur with unbounded signals. Acemoglu
et al. (2011) extend this insight in a broader framework, showing that correct learning can be obtained if
signals are unbounded and the network structure satisfies certain expanding property.

2The wisdom of crowds emphasizes that society can successfully aggregate information despite each of
its member being boundedly rational. Surowiecki (2005) provided many examples where the aggregated
opinions of laymen can be accurate, sometimes outperforming expert opinion. A well-known example is that
at a country fair, individuals were asked to guess the weight of an ox; surprisingly, their average guess was
very close to the ox’s true weight, despite most of them having no expert knowledge of cattle.
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an important feature of social learning—the presence of misinformation, which is prevalent
in real life and can significantly distort the dynamics of social learning. When individuals in-
correctly interpret their information or are exposed to false information, the success of social
learning depends not only on whether dispersed information can be effectively aggregated,
but also on the extent to which incorrect information distorts the learning process. For
instance, while online reviews can guide consumers toward better purchasing decisions by
providing more information, they can also perpetuate misinformation and reinforce biases.
To gain a better understanding of social learning, it is imperative to consider scenarios where
incorrect information is present. The analysis, however, is not straightforward. In addition
to technical challenges, it is unclear which standard to use to evaluate social learning.3

In the paper, I present a model of non-Bayesian social learning that allows misinformation.
In the model, a finite group of individuals try to learn the true state of the world. The
learning process has two stages. The first stage involves social learning, where individuals
share their current beliefs with each other. At the end of this stage, the society forms a
social belief through an aggregation function F . The paper focuses on aggregation rules that
can be approximated by the generalized mean of individuals’ beliefs, that is:

F (µ1, ..., µn) (θ) ∝
(∑

wi × µp
i (θ)

)1/p
,

where wi describes the weight of individual i, and p determines the shape of the aggrega-
tion rule, called the degree of the aggregator. The second stage is private learning, where
individuals receive private signals and update the social belief using Bayes’ rule based on
their private signals. An important feature of the model is that individuals may be misspec-
ified about their data-generating processes, allowing misinformation to spread through the
learning process. The process repeats itself and generates a sequence of beliefs.

To discuss social learning, the paper introduces a new concept—group irrationality, which
refers to the event that social learning outcome is inconsistent with all individuals’ learning
outcomes if they were to learn independently. Specifically, group irrationality occurs when-
ever social learning leads to an asymptotic posterior that assigns positive probability to a
state that would be assigned probability 0 in everyone’s independent learning. Consequently,
society will form a posterior that no individual could have formed on their own. This paper
also introduces a related concept, strong group irrationality, defined as the event that the so-

3With misinformation, correct learning may not be an interesting criterion, because we can easily achieve
incorrect learning under some model perceptions, e.g., when all individuals perceive a highly biased signal
structure. To make the discussion meaningful, we either restrict the set of model perceptions, or we consider
an alternative learning criterion that is more suitable to the situations where individuals may have arbitrary
model perceptions.
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ciety doesn’t learn the true state even if all individuals were able to learn it independently. In
real life, numerous examples exist where group irrationality is likely to occur. For instance, a
company board may approve decisions that each board member would likely oppose, such as
the AOL-Time Warner merger in 2000, which many individual board members later admit-
ted to having reservations about.4 Other examples include wartime scenarios where soldiers
may commit atrocities they would never consider in civilian life and in jury trials, where the
collective verdict diverges from the opinions of individual jurors.5 It is worth noting that
group irrationality is different from incorrect learning. The latter emphasizes whether the
learning outcome is correct, whereas the former emphasizes the inconsistency between social
and individual learning.

To explore group irrationality, this paper presents a series of characterizations of asymp-
totic belief dynamics. Section 5 provides a benchmark characterization. Proposition 1 shows
that in many situations, beliefs tend to concentrate on a state θ that minimizes society’s
weighted relative entropy, i.e., the weighted average of the Kullback-Leibler divergence be-
tween each individual’s true signal distribution and their perceived distribution in state θ.
Essentially, society tends to settle on the state that minimizes the average distance between
individuals’ perceived and true signal distributions. This characterization partly explains
the emergence of group irrationality. To see this, recall a famous result from Berk (1966)
that shows in independent learning, asymptotic posteriors will concentrate on the states
that minimize the relative entropy of perceived signal distributions. However, the state that
minimizes the society’s average relative entropy may not minimize the relative entropy for
any individual, potentially leading the society to adopt a compromised belief that would not
be formed in independent learning, thereby producing group irrationality.

Section 6 provides a more complete characterization of asymptotic beliefs. I define a
new notion of divergence—the weighted p-entropy. Formally, a state θ has a lower weighted
p-entropy than that of state θ′ if the expected log of the weighted p-mean of perceived
likelihood ratios between θ′ and θ is less than 0, where p represents the degree of the belief
aggregator. Theorem 1 demonstrates that asymptotic beliefs can be tightly characterized by
the weighted p-entropy. Specifically, whenever beliefs converge, they will—and in a certain

4Various sources indicate that many high-level executives had reservations regarding the merging decision,
which becomes one of the most infamous corporate failures in history. As Bob Pittman, the AOL’s former
COO, wrote in an email to Fortune, “I think everyone involved in the deal certainly had some doubts, but
given that we went forward with the deal, we thought the positives outweighed the negatives.” (source:
https://www.aol.com/finance/jerry-levin-known-ceo-pushed-154124725.html)

5Group irrationality is also consistent what Gustave Le Bon said in his famous book The Crowd regarding
crowd psychology: “(collective mind) makes them feel, think, and act in a manner quite different from that
in which each individual of them would feel, think, and act were he in a state of isolation. There are certain
ideas and feelings which do not come into being, or do not transform themselves into acts except in the case
of individuals forming a crowd.”(Le Bon, 1895)
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sense, will only—concentrate on the minimizers of the weighted p-entropy, i.e., states with
lower weighted p-entropy compared to other states. Furthermore, Theorem 1 establishes the
connection between asymptotic belief dynamics and the shape of the belief aggregator. It
reveals that belief dynamics can exhibit distinct patterns depending on the sign of the degree
p. For p > 0, beliefs may oscillate infinitely often; whereas for p < 0, beliefs may converge
to multiple limits, each with positive probability. These patterns emerge because the binary
relation induced by the weighted p-entropy may fail to be an order on the state space—when
p > 0, the relation can be incomplete, and no state can dominate all others; when p < 0, the
relation can be intransitive, allowing multiple states to strictly dominate other states. As p
approaches 0, the weighted p-entropy approaches the weighted relative entropy, returning to
the benchmark characterization in Proposition 1.

Using previous characterization, Section 7 examines the robustness of correct learning.
In contrast to the wisdom of crowds, I show that group irrationality is prevalent in social
learning with misinformation. Formally, an aggregation rule is defined as susceptible to
(strong) group irrationality if, under this aggregation rule, social learning produces (strong)
group irrationality with positive probability under some model perceptions. Proposition
2 shows that under certain regularity conditions, all aggregation rules are susceptible to
group irrationality. Therefore, with specific types of misinformation, social learning can
produce beliefs inconsistent with independent learning. Proposition 2 further demonstrates
that all aggregation rules with non-zero degree are susceptible to strong group irrationality.
In these situations, we can find “innocuous” misinformation such that every individual can
learn correctly, but society as a whole cannot. In Section 7, I also address which types of
misinformation—i.e., perceived signal structures—allow society to achieve correct learning
under various aggregation rules. With these model perceptions, social learning is robust,
meaning its success is not heavily dependent on the specific aggregation rules individuals
employ. Proposition 3 shows that these perceived models can be characterized using the limit
weighted p-entropy as p → +∞. An implication is that it becomes increasingly challenging
to achieve robust social learning as society grows larger.

The remainder of the paper is organized as follows. Section 2 presents examples of group
irrationality. Section 3 presents the main model. Section 4 discusses the main assumptions.
Sections 5 and 6 present characterizations of asymptotic beliefs. Section 7 discusses impli-
cations on group irrationality. Section 8 presents an extension of generalized Bayes’ rule in
private learning. Sections 9 and 10 are literature review and conclusion.
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2 Examples

This section shows examples of how group irrationality can arise. To get the basic idea,
consider a society consisting of two individuals, N = {1, 2}. The state space is Θ, and the
true state θ∗ ∈ Θ is unknown to both individuals. Each individual holds a full-support prior
µi0. In each period t ∈ {1, 2, ...}, they first communicate their beliefs from the previous
period and apply the DeGroot’s rule to aggregate information. The social belief vi,t is given
by

vi,t =
1

2
µ1,t−1 +

1

2
µ2,t−1.

After communication, a signal is then realized, but individuals may misspecify the data-
generating process. They apply Bayes rule to the social belief to obtain the posterior, that
is,

∀θ ∈ Θ : µi,t (θ) =
vi,t (θ) l̂i (si,t|θ)∑

θ′∈Θ vi,t (θ
′) l̂i (si,t|θ′)

,

where l̂i denotes the data-generating process perceived by individual i. If both individuals
correctly specify the true data-generating processes, studies have shown that social learning
can lead to correct learning in the limit, consistent with the wisdom of crowds. However, if
either individual imprecisely specifies the true data-generating process, social learning may
produce worse outcomes than that of independent learning. Such group irrationality can
even occur with seemingly harmless model perceptions. Below are two examples.

Example 1. (Group irrationality-1) There are three states Θ = {α, β, γ} and two signals
S = {H,L}. Suppose that the model perceptions

(
l̂1, l̂2

)
are

l̂1 (s|θ) H L

α 9/10 1/10

β 1/2 1/2

γ 2/3 1/3

l̂2 (s|θ) H L

α 1/2 1/2

β 9/10 1/10

γ 2/3 1/3

.

Suppose that signals are i.i.d. and the true signal structure is l̂1. At time t, myopic individuals
take an action ai,t ∈ {h, l} to maximize the one-period expected payoff of u (a, θ), where

u (h, θ) =

1 θ ∈ {α, β}

0 θ = γ
and u (l, θ) = 1− u (h, θ) ,

so the optimal action in states α and β is h, and the optimal action in state γ is l. Learning
is optimal if ai,t → a (θ∗) as t → ∞ for both i, where a (θ∗) denotes the optimal action.
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In this problem, individuals are only interested in learning whether θ∗ ∈ {α, β}. Although
individual 2’s model is incorrectly specified, he only rearranges the distributions between α

and β. A natural conjecture is that this rearrangement should not affect optimal learning
because both individuals can independently learn optimally, and that social belief is the
average of their beliefs. However, this conjecture is incorrect. For instance, suppose that
θ∗ = β, and hence the optimal action is h. If individuals were to learn independently, the
asymptotic posteriors of individuals 1 and 2 would settle on state β and α respectively,
so both of them would take the optimal action, action h, in the limit. However, in social
learning, the asymptotic posteriors of both individuals will settle on state γ, so optimal
learning cannot be achieved.

Example 2. (Group irrationality-2) Suppose that the state space Θ = {G,B}, and the
signal space is S = {SG, SB}. The perceived data-generating processes are

l̂i (s|θ) SG SB

G pi 1− pi

B 1− pi pi

, where pi > 1/2.

The true data-generating process takes the same form but with parameter p∗, where p∗ > 1/2.
Although pi may not equal p∗, both individuals correctly understand the signal direction—
meaning that they know signal Sθ better indicates state θ. This type of misspecification
seems innocuous as individuals can still deduce the true state by comparing the frequency
of each signal—If there are more SG than SB over time, the true state is G; otherwise, the
true state is B. However, in social learning, individuals may not learn the truth, and beliefs
can oscillate forever as shown later.

3 Model Setup

The state space Θ is finite, and the true state θ∗ ∈ Θ is fixed and unknown. A society consists
of a finite set of individuals, N = {1, 2, 3, ..., n}. Every individual i ∈ N holds a full-support
prior µi,0 ∈ ∆++ (Θ) and is trying to learn the true state. Time is discrete t ∈ T = {1, 2, ...}.
Each period t consists of two stages of learning—social learning and private learning.

3.1 Social learning stage

The first stage is social learning, in which individuals communicate their beliefs with others.
Ultimately, society forms a social belief vt which satisfies

7



vt = F (µ1,t−1, ..., µn,t−1) ,where F : ∆n (Θ) → ∆(Θ) . (1)

F is referred as the belief aggregator , which provides a reduced-form description of how
society aggregates information. One assumption is that society reaches a consensus after
communication. One can think of it as the steady state of some underlying social learning
process, so it approximates situations where the society experiences adequate exchanges of
opinions. It is worth noting that the social belief needn’t be consistent with Bayesian updat-
ing; instead, it may come from some non-Bayesian rules . One example is that individuals
repeatedly apply DeGroot’s rule, in which case the social belief is equal to the weighted aver-
age of everyone’s belief (DeGroot, 1974). This paper primarily focuses on aggregation rules
generalizing DeGroot’s rule, i.e., society takes average of individuals’ beliefs. The following
assumption is made:

Assumption 1. (Power-mean tail) When maxi µi (θ) → 0, we have

F (µ1, ..., µn) (θ) ∼
(∑

wi × µp
i (θ)

)1/p
(2)

for some p ∈ R and w ∈ ∆++ (N).6

Assumption 1 encompasses a broad range of aggregation rules. First, society can aggre-
gate beliefs using any power mean with DeGroot’s rule being a special case when p = 1.
Second, it only requires the social belief to be locally approximated by the power-mean when
everyone’s belief is close to 0. Throughout this paper, I refer to the power p as the degree
of the aggregation rule and wi as the weight of individual i. Below is an example.

Example 3. (Power-mean rule) Suppose that F satisfies

F (µ1, ..., µn) (θ) =
(
∑
wi × µp

i (θ))
1/p∑

θ′∈Θ (
∑
wi × µp

i (θ
′))1/p

, (3)

i.e., the social belief is the power-mean of individuals’ beliefs with a normalization term.

3.2 Private learning stage

The second stage of learning is private learning. In this stage, a signal profile st = (s1,t, ..., sn,t) ∈
S is generated according to some data-generating process (DGP) l (s|θ). The signal space

6Here, f (x) ∼ g (x) as x → x0 means that limx→x0

f(x)
g(x) = 1. When p = 0, we define F (µ1, ..., µn) (θ) ∼

exp (
∑

wi × logµi (θ)).
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S = ×n
i=1Si is finite. Signals are not perfectly revealing, thus, l (s|θ) ∈ (0, 1) for all s ∈ S.

The paper assumes the absence of identification problems, meaning that no state θ′ induces
an identical distribution as the true distribution. Let li (s|θ) denotes the i-th marginal dis-
tribution of l (s|θ). Let P and E denote the probability measure and expectation induced
by the true distribution, l (s|θ∗), on the probability space of all signal paths, (S∞, σ (S∞)).
Signals are independent across time but may be correlated across individuals. Individual i
can only observe si but not others. Individual i may be misspecified about their DGPs.
Let l̂i (s|θ) denote the perceived DGP of individual i, which may differ from the true DGP,
li (s|θ). I also assume the absence of identification problems by requiring l̂i (·|θ) ̸= l̂i (·|θ′) for
all θ ̸= θ′ and all i. The posterior belief µi,t satisfies

∀θ ∈ Θ : µi,t (θ) = BUi (vt, si,t) (θ) =
vt (θ)× l̂i (si,t|θ)∑

θ′∈Θ vt (θ
′)× l̂i (si,t|θ′)

. (4)

That is, each individual updates the social belief vt based on their private signal si,t and
perceived DGP l̂i using Bayes’ rule. Subsequently, individuals communicate with each other
again, and the society forms a new social belief. Based on this new belief, individuals update
their posteriors, and the learning process repeats itself infinitely, generating a sequence of
beliefs µ = (µ1, µ2, ...) ,where µt = (µ1,t, ..., µn,t) denotes the profile of beliefs at time t. This
paper aims to characterize asymptotic beliefs. To facilitate discussion, I focus on situations
where the following regularity assumption is satisfied.

Assumption 2. (Irreducibility) For all t ∈ T, vt ∈ ∆++ (Θ), θ ∈ Θ and ε > 0, there exists
T <∞ and signal profile (st, ..., st+T ) ∈ S such that vt+T (θ) > 1− ε.

Alternatively, it is possible for social beliefs to assign high probability on any given
state. If this assumption is violated, society will never learn the truth for some choice of
the true state, so suboptimal learning outcomes emerge trivially by definition. Technically,
Assumption 2 allows extreme beliefs to be reached with positive probability, which enables
us to employ the local properties of belief aggregators imposed by Assumption 1.

3.3 Group Irrationality

I then introduce the concept of group irrationality. Intuitively, group irrationality means
that society achieves a learning outcome inconsistent with the outcomes that could have
been achieved independently by each individual. To formalize this idea, I define the following
concepts

Ri (θ) ≡ E log

(
li (s|θ∗)
l̂i (s|θ)

)
, Θi ≡ argmin

θ∈Θ
Ri (θ) ,
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where Ri (θ) is the relative entropy of state θ under l̂i; Θi denotes the set of states that
minimize the relative entropy. The relative entropy measures the distance between individual
i’s perceived and the true signal distributions. The set Θi represents the states that best fit
the true distribution under individual i’s perceived model. We further define that individual
i’s model perception l̂i is innocuous if Θi = {θ∗}, that is, the true state is the unique
minimizer of the relative entropy. I define group irrationality as follows.

Definition 1. We say that: (i) group irrationality emerges if µt (∪iΘi) doesn’t converge
to 1 as t → +∞, and (ii) strong group irrationality emerges if all individuals’ model
perceptions are innocuous, and µt (θ

∗) does not converge to 1 as t→ +∞.7

To understand Definition 1, it is helpful to recall a well-known result from Berk (1966)
that says in misspecified Bayesian learning, each individual i’s posteriors will settle on the
best-fitting states, Θi.8 Group irrationality occurs when individuals’ asymptotic posteriors
assign positive probability to states that are not best-fitting under any individual’s perceived
signal structure, so society ends up forming a posterior that contradicts everyone’s signal
interpretation. If group irrationality occurs and if all individuals have innocuous model
perceptions, then we say that strong group irrationality occurs. In this case, society runs into
a highly suboptimal outcome that incorrect social learning emerges although all individuals
can independently identify the true state.

Example 4. (Group irrationality) In Example 1, the distributions in states β and α perfectly
match the true distribution according to 1 and 2’s perceived signal structures respectively,
so Θ1 = {β} and Θ2 = {α}. However, in social learning, both individuals’ posteriors assign
probability 1 to γ in the limit, thus we have group irrationality.

Example 5. (Strong group irrationality) In Example 2, both individuals correctly specify
the direction of each signal, so their model perceptions are innocuous with Θ1 = Θ2 = {θ∗}.
However, society doesn’t learn the true state, so strong group irrationality occurs.

4 Discussion of Assumptions

Social learning rule. This paper employs a reduced-form approach in which social learn-
ing is described by a belief aggregator F . This approach abstracts away from details of the
learning process and enables us to characterize beliefs in a simple manner. One implicit

7Here, µt = (µ1,t, ..., µn,t) is belief profile in period t. It converges to 1 means each µi,t converges to 1.
8More formally, suppose individual i were to learn independently by Bayes’ rule, then we have µi,t (Θi) →

1 as t → +∞ almost surely.
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assumption is that society will reach a consensus after every round of social learning. The
emergence of a consensus is a prevalent feature in various social learning models, e.g., Baner-
jee (1992), Bikhchandani et al. (1992), Gale and Kariv (2003), Rosenberg et al. (2009). We
can interpret the social belief as the steady state of some underlying belief-exchange process,
so this learning environment approximates situations where there are adequate communica-
tions, and individuals hold similar beliefs in the end. Besides, one focus of the paper is to
examine the divergence between social and individual learning, so imposing a social belief is a
convenient assumption.9 The setup can also be microfounded by a more structural approach
where individuals are connected through a social network and interact with their neighbors
in a repeated manner (see an earlier version in Chen (2022)). For example, when individuals
adopt the DeGroot’s rule, beliefs will converge to a

F (µ1, ..., µn) (θ) =
∑
i

wi × µi (θ) , (5)

where the weighting vector w denotes the eigenvector centrality of the network (suppose
the network is aperiodic and irreducible). It is worth noting that the paper’s main interest
is to examine how the consensus evolves overtime instead of how it emerges in communi-
cations, which is another feature different from the literature on belief exchange such as
Golub and Jackson (2010) and Cerreia-Vioglio et al. (2024). One can also think of other
microfoundations, e.g., individuals play coordination games repeatedly, and the social belief
corresponds to the equilibrium in each stage game, and this paper investigates the evolution
of the equilibrium.

Private learning rule. Different from social learning, the paper assumes that individuals
apply Bayes’ rule in private learning. One justification is that in social learning, it is difficult
for individuals to apply Bayes’ rule, which involves complicated inferences regarding other
individuals’ signals. In contrast, in private learning, individuals are facing a much easier
learning problem, making Bayes’ rule more plausible. The disparity in updating rules has
appeared in quasi-Bayesian social learning papers, e.g., Molavi et al. (2018). Differently, this
paper also allows individuals to misspecify their signal-generating processes, which captures
the presence of misinformation. Thus, this paper’s setup features two types of learning
mistakes:

• Naivety in social learning : social belief is aggregated through some heuristic rule,
9A natural extension is to allow individuals to have heterogeneous beliefs after each round of social

learning. I conjecture that the paper’s results can generalize to this case. In particular, all results are
expected to hold as long as the society achieves consensus asymptotically. The situations not captured by
this paper’s approach are those where consensus fails to emerge in the limit. However, in such cases, society
cannot achieve correct learning, which is still consistent with the paper’s implications.
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• Misspecification in private learning : individuals can incorrectly interpret their private
information.

Notably, these two sources play different roles in determining belief dynamics, and neither
can substitute for the other. One can find examples where correct learning is obtained
when only one source is present but not both. For example, without misspecification, some
heuristic learning rules can guarantee correct learning, e.g., the DeGroot’s rule. However,
as will be shown later, with model misspecification—even if the misspecification appears
in an innocuous manner—correct learning will not be achieved for almost all heurstic rules
considered in the paper. This suggests many results supporting the wisdom of the crowds
hinge on the assumption that all individuals correctly specify their signal structures.

Group irrationality. In general, group irrationality refers to the phenomenon where the
group’s behavior differs—often in a negative way—from how its members would have inde-
pendently behaved. This paper focuses on the belief aspect, where group irrationality means
that the social learning outcome contradicts the individual learning outcomes. Motivated by
the fact that posteriors will settle on entropy-minimizing states in individual learning, this
paper defines group irrationality as the event where posteriors in social learning attach posi-
tive weights to states that do not minimize relative entropy for any individual. Consequently,
social learning will produce an asymptotic belief absent in any individual learning.

It is also worth emphasizing the difference between group irrationality and the wisdom
of crowds. In models featuring the wisdom of crowds, society may also achieve an outcome
different from what individuals could have independently achieved. For instance, each indi-
vidual might face an identification problem and be unable to learn the truth independently;
however, society as a whole does not face identification problems, and the truth can be
learned through social learning (Jadbabaie et al., 2012). The wisdom of crowds emphasizes
the positive effect of social learning in aggregating dispersed information, whereas group
irrationality emphasizes the inconsistency between social belief and private information.

Remark 1. The entropy-based definition relies on the assumption that individuals apply
Bayes’ rule in the private learning stage, but the idea can be extended to non-Bayesian
updating rules. Instead of employing the entropy-minimizing states, we can analogously use
the support of asymptotic posteriors and define group irrationality in a similar way. This
extension is discussed in Section 8.
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5 A Benchmark Characterization

In this section, I first present a benchmark characterization of asymptotic beliefs and then
discuss its implications on group irrationality. Subsequently, a more comprehensive charac-
terization will be presented in the next section. I first define the weighted relative entropy
of state θ as

Iw (θ) ≡
n∑

i=1

wi ×Ri (θ) , where w = (w1, ..., wn) ∈ ∆(N) .

The weighted relative entropy has a simple interpretation: It describes society’s average
distance, in the relative entropy sense, between each individual’s true signal distribution and
perceived signal distribution in state θ. If θ minimizes the weighted relative entropy, then
it means θ achieves the minimum average distance between individuals’ perceived signal
distributions and true signal distributions. We have the following proposition:

Proposition 1. (Benchmark characterization) Suppose there is a unique state θ0 that min-
imizes Iw (θ). As t→ +∞, we have:

(i) if p > 0, then whenever µt converges, µi,t → δθ0 for all i except for P-null events;
(ii) if p < 0, then it happens with P-positive probability that µi,t → δθ0 for all i,

where p denotes the degree and w denotes the weights of individuals in the aggregation rule.

Proposition 1 shows that posteriors have a tendency to accumulate on the state that
minimizes the weighted relative entropy. Specifically, if the belief aggregator has a posi-
tive degree (p > 0), beliefs can only converge to the point-mass belief on the minimizer
of the weighted entropy; if it has a negative degree (p < 0), beliefs will converge to the
point-mass belief with a positive probability. The reason why positive and negative degrees
have different statements will be explained later. Proposition 1 provides a channel through
which group irrationality can occur—states that minimize society’s weighted relative entropy
may not minimize the relative entropy for any individual; consequently, society may settle
on a state that would be been assigned probability 0 in independent learning. Using this
characterization, we can explain the occurrence of group irrationality in Example 1.

Example 6. In Example 1, it can be verified that

Iw (γ) =
1

2
log

3

4
+

1

2
log

3

2
≈ 0.03, Iw (α) = Iw (β) =

1

4
log

5

9
+

1

4
log 5 ≈ 0.11.

Thus, state γ is the unique state that minimizes the weighted relative entropy. Here, although
both α (or β) can perfectly match the true signal distribution, (1/2, 1/2), under individual
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2 (or 1)’s perceived signal structure, it induces an extreme distribution, (9/10, 1/10), under
the other individual’s perception. That is, the average distance from the true distribution in
state α or β is very large. Proposition 1 hence implies that asymptotic beliefs can only settle
on state γ, the best-fitting state on average, which is consistent with group irrationality.

5.1 Intuition: the log-linear case

I then explain the intuition behind Proposition 1. To grasp the key idea, I focus on discussing
the log-linear rule, where

log
F (µ1, ..., µn) (θ)

F (µ1, ..., µn) (θ′)
=
∑
i

wi × log
µi (θ)

µi (θ′)
, (6)

which represents the limit case of (3) when p → 0.10 Under this rule, the log likelihood
ratio of the social belief is equal to the simple average of the log likelihood ratio of each
individual’s private belief. Combining (6) with (1) and (4), the social belief v = {vt} must
satisfy the following recursive form

log
vt+1 (θ)

vt+1 (θ′)
= log

vt (θ)

vt (θ′)
+
∑
i

wi × log
l̂i (si,t|θ)
l̂i (si,t|θ′)

. (7)

Taking the time average on both sides of (7), we obtain

1

t
log

vt+1 (θ)

vt+1 (θ′)
=

1

t
log

v1 (θ)

v1 (θ′)
+
∑
i

wi ×
1

t

t∑
τ=1

log
l̂i (si,τ |θ)
l̂i (si,τ |θ′)

.

The strong law of large numbers implies that as t→ +∞, we P-almost surely have

1

t
log

vt+1 (θ)

vt+1 (θ′)
→
∑
i

wi × E log
l̂i (si,t|θ)
l̂i (si,t|θ′)

= Iw (θ′)− Iw (θ) .

Therefore, if Iw (θ′) < Iw (θ), we must have vt (θ) converges to 0. Suppose that θ0 uniquely
minimizes Iw (θ), then vt must assign all weights on θ0, which implies that µi,t will settle on
state θ0 in the limit.

10The rule can be microfounded by the log-linear rule in Molavi et al. (2018), where w stands for the
eigenvector centrality of the network.
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5.2 Situations not captured by Proposition 1

It is worth noting that the characterization in Proposition 1 is very incomplete. Although
it helps to explain the emergence of group irrationality, it cannot explain why strong group
irrationality can emerge (e.g., in Example 2). This is because if everyone’s model perception
is innocuous, then the true state must minimize society’s weighted relative entropy. There-
fore, correct learning aligns with Proposition 1. In fact, the weighted relative entropy is
often inadequate to characterize asymptotic beliefs. Below is an example in which learning
dynamics are different despite the minimizers of the weighted relative entropy being the
same.

Example 7. Consider the same setup as in Example 1. Suppose the model perceptions(
l̂1, l̂2

)
are

l̂1 (s|θ) H L

α x 1− x

β 1/2 1/2

γ 2/3 1/3

l̂2 (s|θ) H L

α 1/2 1/2

β x 1− x

γ 2/3 1/3

,

where x ∈ (0, 1). It can be verified that when x is sufficiently small (x → 0) or sufficiently
large (x → 1), we have Iw (γ) < Iw (α) = Iw (β). In both cases, γ uniquely minimizes the
weighted relative entropy. However, when x is sufficiently large, vt converges to δγ almost
surely; when x is small, vt almost surely doesn’t converge.

6 Characterization of Asymptotic Beliefs

In this section, I present a more comprehensive characterization of asymptotic beliefs that
allows us to analyze situations not covered by Proposition 1. I first introduce a new notion
of divergence that generalizes the idea of the weighted relative entropy.

Definition 2. For all θ, θ′ ∈ Θ, w ∈ ∆++ (N) and p ̸= 0, we define θ ⪰w
p θ

′ whenever

Dw
p (θ′, θ) =

1

p
× E log

(
n∑

i=1

wi ×

(
l̂i (si|θ′)
l̂i (si|θ)

)p)
≤ 0, (8)

and call that the weighted p-entropy of θ is lower than that of θ′.

Definition 2 generalizes the idea of the weighted relative entropy: If state θ has a lower
weighted p-entropy than that of θ′, then the weighted average of society’s perceived likelihood
ratios in states θ′ and θ decreases on expectation. The only difference between these two
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concepts is how to average perceived likelihoods: the weighted relative entropy employs the
average log-likelihood ratio, whereas the weighted p-entropy employs the log of the p-average
of the likelihood ratio. I denote by Θw

p the states that dominate all other states under ⪰w
p

and refer to it as the set of minimizers of the weighted p-entropy . I also define a strict
relation ≻w

p by imposing a strict inequality in (8) and let Θ̂w
p denote the states that strictly

dominate others. It is worth noting that ⪰w
p may not be an order, thus it is possible to have

no dominating state or multiple strict-dominating states. Below is the main characterization
theorem.

Theorem 1. (Characterization of Asymptotic Beliefs) Let p and w denote the degree and
weights of the belief aggregator respectively. As t→ +∞, we have:

(i) Whenever µt converges, µi,t → δθ for all i for some θ ∈ Θw
p except for P-null events;

conversely, if θ ∈ Θ̂w
p , then µi,t → δθ for all i with a P-strictly positive probability.

(ii) If µt oscillates P-almost surely, then p ≥ 0 and Θ̂w
p = ∅; conversely, if p > 0 and

Θw
p = ∅, then µt oscillates P-almost surely.

(iii) If µt can converge to multiple limits, then p ≤ 0 and |Θw
p | > 1; conversely, if p < 0

and |Θ̂w
p | > 1, then µt can converge to multiple limits.11

Theorem 1 (i) shows that beliefs will—and in some sense will only—concentrate on the
minimizers of the weighted p-entropy. First, whenever beliefs converge, they must converge
to the point-mass belief on one of the minimizers; second, if there is a strict minimizer,
then beliefs must converge to the point-mass belief on this state with a positive probability.
Theorem 1 (ii) and (iii) further show that dynamics display different patterns when p is
positive and negative. Specifically, beliefs will oscillate infinitely often only when p is negative
and will settle on multiple limits only when p is positive. Below I first present some examples
and then discuss the mechanism behind Theorem 1.

Example 8. (Emergence of group irrationality) Theorem 1 can explain the emergence of
strong group irrationality in Example 2. In that example, beliefs are aggregated in a linear
way so p = 1. Suppose the true state is G, then we have

Dw
1 (B,G) = E log

(
w1 ×

l̂1 (s1|G)
l̂1 (s1|B)

+ w2 ×
l̂2 (s2|G)
l̂2 (s2|B)

)

= p∗2 log

(
1

2
· p1
1− p1

+
1

2
· p2
1− p2

)
+ p∗ (1− p∗) log

(
1

2
· p1
1− p1

+
1

2
· 1− p2

p2

)
(1− p∗) p∗ log

(
1

2
· 1− p1

p1
+

1

2
· p2
1− p2

)
+ (1− p∗)2 log

(
1

2
· 1− p1

p1
+

1

2
· 1− p2

p2

)
.

11Formally, convergence to multiple limits means that there are at least two limit belief profiles µ∞ and
µ′
∞ such that both µt → µ∞ and µt → µ′

∞ happen with positive probability.
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Fixing p2, when p1 → 1, we have Dw
1 (B,G) → +∞, so G ⪰̸w

1 B. Similarly, we can show that
B ⪰̸w

1 G. Therefore, if one individual has a sufficiently large pi, no state can dominate the
other state, i.e., Θw

1 = ∅. Theorem 1 (ii) implies that beliefs almost surely don’t converge.

Example 9. (The weighted relative entropy and p-entropy) In Example 7, γ is the unique
state that minimizes the weighted relative entropy both when x is sufficiently small and
sufficiently large, but beliefs only converge in the second case. This can also be explained
using Theorem 1. If we calculate the weighted p-entropy, we obtain

Dw
1 (α, γ) =Dw

1 (β, γ)

=
1

4
× log

[(
3

4
x+

3

8

)(
3

4
x+

3

4

)(
15

8
− 3

2
x

)(
9

4
− 3

2
x

)]
.

As x→ 0, we have
Dw

1 (α, γ) ,Dw
1 (β, γ) → 0.02 > 0,

so we have γ ⪰̸w
1 α and γ ⪰̸w

1 β. Moreover, we can also show that α and β cannot dominate γ,
thus we have Θw

1 = ∅. Therefore, beliefs oscillate almost surely by Theorem 1 (ii). However,
as x→ 1, we have

Dw
1 (α, γ) ,Dw

1 (β, γ) → −0.08 < 0.

Thus, we have γ ≻w
1 α and γ ≻w

1 β, which implies that Θ̂w
1 = {γ}, so we have vt converges to

δγ with a strictly positive probability by Theorem 1 (i). In the Appendix A.5, I further show
that the convergence happens with probability 1. In this example, x → 0 and x → 1 have
identical effects on the weighed relative entropy, but their effects on the weighted p-entropy
are asymmetric and hence induce different belief dynamics.

6.1 Proof sketch

Subsequently, I discuss the mechanics behind Theorem 1. The discussion focuses on two
aspects: First, why asymptotic dynamics can be characterized by the weighted p-entropy;
second, why belief dynamics exhibit different patterns for positive and negative ps.

The role of the weighted p-entropy

First, I demonstrate that dynamics of social belief {vt} can be locally characterized using
the the weighted p-entropy. Suppose that society is very confident in some state θ, i.e.,

17



vt (θ) ≈ 1, then for any other state θ′ and any i, we have:

µi,t+1 (θ
′) =

vt (θ
′) l̂i (si,t|θ′)∑

θ̂ vt (θ
′) l̂i (si,t|θ′)

≈ vt (θ
′)× l̂i (si,t|θ′)

l̂i (si,t|θ)
. (9)

Furthermore, Assumption 1 says that the aggregated social belief can be locally approx-
imated by the p-average of all individuals’ beliefs. Combining this assumption with the
approximation in (9), we can approximate the dynamics of {vt (θ′)} recursively and obtain

vt+1 (θ
′) = F (µ1,t+1, ..., µn,t+1) (θ

′) ≈

[∑
wi ×

(
l̂i (si,t|θ′)
l̂i (si,t|θ)

)p]1/p
× vt (θ

′) .

After taking log expectation to this approximation, we obtain

E [log vt+1 (θ
′) |Ft] ≈ log vt (θ

′) +Dw
p (θ′, θ) , (10)

where Ft ≡ σ (s1, ..., st) denotes the information up to time t. Therefore, if state θ′ has
a lower (higher) weighted p-entropy than state θ, then {log vt (θ′)} is a submartingale (su-
permartingale) and tends to increase (decrease) locally. We can further show that if there
exists some state θ that has a lower weighted p-entropy than any other state, and if the
society is confident in θ, beliefs will eventually converge to the point-mass belief on state θ.
Assumption 2 ensures that society can be confident in any state, which imply that beliefs
converge to the point-mass on any minimizer of the weighted p-entropy with positive proba-
bility. Similarly, we can also show that if a state does not minimize the weighted p-entropy,
then beliefs will not settle on that state. Thus, we can prove Theorem 1(i).

The differences in dynamics between p > 0 and p < 0

Another feature of Theorem 1 is that dynamics exhibit different patterns for positive and
negative p. In particular, beliefs oscillate when p > 0 and can converge to multiple limits
when p < 0. To see this, we notice that when p→ 0, we have

Dw
p (θ′, θ) → Dw

0 (θ′, θ) ≡
n∑

i=1

wi × E log

(
l̂i (si|θ′)
l̂i (si|θ)

)
= Iw (θ)− Iw (θ′) ,

hence the weighted p-entropy approaches the weighted relative entropy, and we use ⪰w
0 to

denote the dominance under the weighted relative entropy. Note that ⪰w
0 constitutes an

order on Θ. However, in general, ⪰w
p may not be an order. Moreover, we have the following

result:
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∀p ≥ q : θ ⪰w
p θ

′ =⇒ θ ⪰w
q θ

′.

Alternatively, the binary relation ⪰w
p is stronger with a larger p in the sense that it is more

difficult for a state to dominate another as p becomes larger. Recall that ⪰w
0 is an order,

therefore ⪰w
p can be incomplete when p > 0, in which case the minimizer of the weighted

p-entropy may not exist; similarly, ⪰w
p can be intransitive when p < 0, in which case

there can be multiple strict minimizers of the weighted p-entropy (see Corollary 3 in the
Appendix). From the previous discussion, the first case corresponds to non-convergence,
whereas the second case corresponds to the multiplicity of limit points.

6.2 Discussion: relation to other divergences

The main characterization relies on the weighted p-entropy. A similar notion of divergence
is the p-divergence in Bhattacharya et al. (2019) and Frick et al. (2023), where

Ip (θ
′, θ) = E

(
l̂i (s|θ′)
l̂i (s|θ)

)p

.

This divergence differs from the weighted p-entropy, and they induce distinct orderings over
the state space. Furthermore, the role of p also varies. Specifically, Bhattacharya et al. (2019)
employs the p-divergence to analyze the concentration rate of power Bayes’ rule, where p
is equal to the Bayesian power; Frick et al. (2023) employs the divergence to construct
a bounded local martingale, and their p is not related to the shape of the learning rule.
Moreover, both papers require p > 0 whereas this paper allows both positive and negative
p. Another related divergence is the Rényi entropy in which

IRényi (θ) =
1

p
logE

(
li (s|θ∗)
l̂i (s|θ)

)p

,

where relative entropy corresponds to the limit where p → 0. Different from the weighted
p-entropy and the p-divergence, the Rényi entropy constitutes an ordering over the state
space.

7 Group Irrationality and Learning Robustness

Based on previous characterization, this section examines whether group irrationality is a
universal phenomenon in this paper’s learning framework. Furthermore, this section dis-
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cusses whether society can robustly learn the true state, i.e., correct learning does not rely
crucially on individuals’ model perceptions or society’s aggregation rule.

7.1 The prevalence of group irrationality

To facilitate discussion, we need to modify Assumption 2 because it implicitly restricts both
belief aggregators and model perceptions, making it inconvenient to fix one and change the
other. I introduce the following assumptions.

Assumption 3. (Intermediate Likelihood Ratio) F satisfies

F (µ1, ..., µn) (θ)

F (µ1, ..., µn) (θ′)
∈
[
min

i

µi (θ)

µi (θ′)
,max

i

µi (θ)

µi (θ′)

]
for all θ, θ′ ∈ Θ and µ1, ..., µn ∈ ∆++ (Θ).

Assumption 4. (State-specific good news) For all i and all θ ∈ Θ, there exists some siθ such
that l̂ (siθ|θ) > l̂ (siθ|θ′) for all θ′ ̸= θ.

Assumption 3 says that the likelihood ratio of social belief cannot exceed the maximum
and minimum likelihood ratios of individuals’ beliefs. An example is (3) in which the social
belief is equal to the p-th power average of individuals’ beliefs. Assumption 4 says the
perceived signal structure satisfies that for each state, there exists some “good-news” signal
that is most likely to occur in that state. It is easy to verify that Assumptions 3 and 4 imply
Assumption 2, thus all previous results hold. With some abuse of language, I say that a
belief aggregator F is regular if it satisfies Assumptions 1 and 3, and a model perception is
regular if it satisfies Assumption 4. Throughout the whole section, I focus on regular belief
aggregators and model perceptions.12

Definition 3. F is susceptible to (strong) group irrationality if there are regular
model perceptions l̂1, ..., l̂n under which (strong) group irrationality emerges with P-positive
probability.

Susceptibility to group irrationality does not mean that correct learning can never be
obtained. It only indicates that group irrationality can occur in the presence of particular
forms of misinformation. In other words, we can find model perceptions under which states

12Assumptions 3 and 4 are not necessary for the main result. They are merely convenient assumptions
that can ensure Assumption 2 and encompass many interesting cases. All results extend to other situations
where Assumption 2 holds. When Assumption 2 does not hold, the suboptimality of social learning trivially
occurs, as mentioned earlier. Therefore, the qualitative results based on these two assumptions are, in some
sense, without loss of generality.
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that are not best-fitting for any individual will be assigned a positive probability in the
limit. Furthermore, if F is susceptible to strong group irrationality, then there exist model
perceptions under which every individual can independently identify the true state, but social
learning can still lead to incorrect learning. We have the following result.

Proposition 2. (Prevalence of group irrationality) Every regular F is susceptible to group
irrationality; every regular F with non-zero degree is susceptible to strong group irrationality.

Proposition 2 shows that group irrationality is prevalent for all regular aggregation rules.
This contrasts with the "wisdom of crowds" results in the non-Bayesian learning literature,
which demonstrate that correct learning can be achieved for some common aggregation
rules, such as the power-average rule (3) with p ∈ [−1, 1] (Molavi et al., 2018). However,
the "wisdom of crowds" results largely depend on the assumption that all individuals have
correct model perceptions. In contrast, Proposition 2 indicates that if some individuals have
incorrect model perceptions, even if their perceptions are innocuous, correct learning no
longer holds under various aggregation rules. An example of this is the linear learning rule
as illustrated in Example 2. Below is another example.

Example 10. (Harmonic-mean rule) Consider the same setup as in Example 2. The only
difference is that individuals adopt the following belief aggregation rule:

F (µ1, µ2) (θ) ∝
1

2

1

µ1,t−1 (θ)
+

1

2

1

µ2,t−1 (θ)
.

That is, individuals take harmonic mean (with normalization) of each other’s belief. It can
be verified that if some pi is sufficiently large, we have Θ̂w

p = {G,B}, so beliefs can settle on
the incorrect state with a strictly positive probability.

Proposition 2 also suggests that aggregation rules with degree 0 may prevent strong
group irrationality. One example is the log-linear rule (6). We say that an aggregation rule
is immune to strong group irrationality if, for all innocuous model perceptions, strong
group irrationality occurs with zero probability. We have the following result.

Corollary 1. (Log-linear rule and strong group irrationality) The log-linear rule is immune
to strong group irrationality. Conversely, if a regular aggregation rule is immune to strong
group irrationality, then it must approximate the log-linear rule near extreme beliefs.13

The second part comes directly from the second half of Proposition 2. To see the first part,
notice that under the log-linear rule, all individuals’ posteriors will converge to the point-
mass belief on the state that minimizes the society’s weighted relative entropy, assuming that

13Formally, F (µ1, ..., µn) ∼ exp (
∑

wi × logµi (θ)) as maxi µi (θ) → 0.
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such state is unique (see the discussion in Section 5). With innocuous model perceptions,
the true state θ∗ uniquely minimizes the relative entropy for all i, so the minimizer of the
weighted relative entropy is the true state as well. Consequently, correct learning almost
surely occurs with innocuous model perceptions.

Remark 2. Corollary 1 provides another rationale for the log-linear rule proposed by Molavi
et al. (2018). It implies that if we allow for model misspecifications, then the log-linear rule
is, in some sense, the only aggregation rule can prevent strong group irrationality. For any
other regular aggregation rule, we can always find situations in which the society fails to
learn the truth, even if each individual is able to learn it independently.

7.2 Which model perceptions can ensure correct learning?

In the last subsection, we discussed whether it is possible for group irrationality to occur
under some model perceptions; however, we may still find a large class of model perceptions
under which correct learning can be achieved. This section characterizes model perceptions
that can ensure correct learning against a variety of aggregation rules. This discussion can
help us to gain a better understanding of the robustness of correct learning.

Definition 4. Model perceptions l̂ =
(
l̂1, ..., l̂n

)
are robustly innocuous if with those

perceptions, society can almost surely learn the true state for all regular belief aggregators.

With robustly innocuous model perceptions, correct learning is robust in the sense that
it does not depend significantly on specific aggregation rules. Robust innocuousness is a
stronger concept than innocuousness: l̂ being robustly innocuous requires everyone’s model
perception to be innocuous (except for some tie situations). To fully characterize robustly
innocuous model perceptions, I introduce the following concept:

Definition 5. For all θ, θ′ ∈ Θ, we define

θ ⪰∞ θ′ ⇐⇒ D∞ (θ′, θ) = E

[
max
i∈N

log

(
l̂i (si|θ′)
l̂i (si|θ)

)]
≤ 0, (11)

and say that θ robustly dominates θ′. We further define Θ∞ (and Θ̂∞ ) as the set of states
that (strictly) dominate other states under ⪰∞.

The robust domination represents the limit case of the domination induced by the
weighted p-entropy as p → +∞. In words, if θ robustly dominates θ′, society’s maximum
perceived likelihood ratio between these θ′ and θ decreases on expectations. Using Definition
5, we can characterize robustly innocuous perceptions.
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Proposition 3. l̂ is robustly innocuous if it satisfies θ∗ ∈ Θ̂∞ and only if it satisfies θ∗ ∈ Θ∞.

Proposition 3 provides an almost necessary and sufficient condition for model percep-
tions to be robustly innocuous. Note that the robust domination (11) is defined using the
maximum over all individuals. A natural implication is that with independent signals, it
becomes more challenging for the true state to robustly dominate other states as the size
of the society increases. This leads to an interesting result—it is harder to achieve correct
learning in a larger society. Below is an example.

Example 11. (Harder to learn in a larger society) Consider the binary case in Example
2, where signals are i.i.d. with true probability p∗, where p∗ > 1/2. Suppose there are n
individuals, each with an identical model perception p̂ > 1/2 (thus, I use p̂ to represent the
model perception profile l̂). Assume the true state is G. From Proposition 3, p̂ is robustly
innocuous if

D∞ (B,G) = (1− 2p∗n)× log

(
p̂

1− p̂

)
< 0. (12)

We have the following observations. First, no model perception is robustly innocuous in a
large society. When the size of the society n > log

1/2
p∗ , (12) fails to hold for all feasible p̂.

Furthermore, if we allow p∗ to change, robust innocuousness requires individuals to have more
precise private signals in a larger society. To see this, from (12), robust innocuousness requires
p∗ > n

√
1
2
≡ p (n). When n = 1, p (n) = 1/2, meaning signals only need to be informative.

As n→ +∞, p (n) → 1, meaning signals need to be nearly perfectly informative.

Example 11 does not imply that it is harder to achieve correct learning under a specific
aggregation rule as the society grows larger. Instead, it suggests that it easier to find some
aggregation rules under which correct learning collapses as the society expands. Moreover,
all model perceptions are not robustly innocuous when the society is sufficiently large. Below
is the statement for more general cases.

Corollary 2. (No robust learning in large society) Suppose that individuals have i.i.d. signal
distribution l and homogenous model perception l̂. Then, for all feasible l and l̂, there exists
some n0 < +∞ such that l̂ is not robustly innocuous when the size of the society n ≥ n0.14

Corollary 2 further contrasts the idea of the wisdom of crowds by showing that a large
society is vulnerable to incorrect learning. This vulnerability arises because errors can be
amplified in a large society when individuals learn in a non-Bayesian manner.

14The assumption of homogeneous model perception can be relaxed. For example, we can allow individuals’
model perceptions to come from any finite set.
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8 Extension: Other Updating Rules in Private Learning

In the model setup, I assume that individuals apply Bayes’ rule when updating beliefs during
private learning. It is reasonable to consider situations where individuals deviate from the
Bayesian paradigm. This section discusses how the paper’s characterization can be extended
to more general situations.

8.1 Learning with generalized Bayes’ rule

Let’s consider an alternative setup where, in the social learning stage, individuals apply the
same updating rule; in the private learning stage, individuals follow the generalized Bayes’
rule . That is, their posteriors are given by

∀θ ∈ Θ : µi,t (θ) = GBUi (vt, si,t) (θ) =
v (θ)× ψi (s|θ)∑

θ′∈Θ v (θ
′)× ψi (s|θ′)

,

where ψi : Si × Θ → R++ is called the pseudo-likelihood function . When ψi is a signal
distribution, it corresponds to Bayes’ rule as in the benchmark model. The generalized
Bayes’ rule also allows for other interesting cases as below.

Example 12. Suppose that the learning rule satisfies

ψi (s|θ) = l̂αi (s|θ) , where α > 0, (13)

then it becomes the power Bayes’ rule, and the posterior is called power posterior (Walker
and Hjort, 2001). As α decreases, individuals attach larger weights to their prior beliefs.
When α = 0, individuals stick to their priors; as α → +∞, posteriors put almost all weights
on the maximum likelihood states.

Example 13. Suppose that the pseudo-likelihood function is

ψi (s|θ) = exp (−ρi (s, θ)) , (14)

where ρi (s, θ) stands for a loss function. The posterior is referred to as Gibbs posterior
(Jiang and Tanner, 2008; Bissiri et al., 2016). The motivation is that individuals select a
posterior to minimize the expected loss that depends on both state and signal.
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8.2 Characterization of asymptotic beliefs

For all previous cases, we can redefine the relative entropy and the weighted p-entropy by
substituting the likelihood function l̂i with the pseudo-likelihood function ψi. For example,
we can define the generalized relative entropy as follows:

R (θ;ψi) ≡ E log

(
li (s|θ∗)
ψi (s|θ)

)
,

then define group irrationality by employing the minimizers of the generalized relative en-
tropy. Due to the identical structure, all previous characterization results can be extended
analogously. An interesting application of this is the power posterior rule discussed in Ex-
ample 12. First, I impose the following assumption.

Assumption 5. (No indifference) For all θ ̸= θ′, we have Iw (θ) ̸= Iw (θ′) .

In other words, no two states have identical weighted relative entropy. We have the
following proposition.

Proposition 4. (Characterization with power Bayes’ rule) Suppose that Assumptions 1 and
3 to 5 hold. If individuals follow the power Bayes’ rule (13), there exists some α0 ∈ R+ such
that as t→ +∞, we have

∀i : µi,t → δθ0 P-a.s. where θ0 = argmin
θ∈Θ

Iw (θ)

whenever α ∈ (0, α0), where α stands for the posterior power.

When α is small, it indicates that individuals are cautious about incorporating their
private signals into their posteriors. Proposition 4 states that when all individuals are suf-
ficiently cautious, their posteriors will almost surely converge to the state that minimizes
the weighted relative entropy, aligning with the benchmark characterization in Proposition
1. This provides another interpretation of the benchmark characterization—it characterizes
asymptotic beliefs with adequately cautious agents. An implication from Proposition 4 is
that society can successfully avoid strong group irrationality by being sufficiently cautious
with their private signals. In Example 2, if individuals apply the power Bayes’ rule with
small exponent instead of standard Bayes’ rule, beliefs will not oscillate infinitely often, and
both individuals will almost surely learn the true state.
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9 Related Literature

The paper is related to two threads of literature. The first is the literature on non-Bayesian
social learning. The two most similar papers are Jadbabaie et al. (2012) and Molavi et al.
(2018), which study a social learning problem where individuals receive infinitely many sig-
nals and exchange beliefs with their neighbors. Jadbabaie et al. (2012) show that when
individuals incorporate others’ beliefs in a simple-average manner, correct learning will be
obtained. Molavi et al. (2018) axiomatize a log-linear learning rule and provides conditions
under which learning is correct. The main difference is that this paper introduces misinfor-
mation by allowing individuals to have an incorrect interpretation of their signals. It turns
out that misinformation can produce group irrationality even under rules that can achieve
correct learning without misspecification. This paper is also related to a large body of liter-
ature on belief exchange in social networks. For example, DeMarzo et al. (2003) and Golub
and Jackson (2010) examine a social learning problem where individuals communicate beliefs
back and forth in the DeGroot (1974)’s manner; Cerreia-Vioglio et al. (2024) study a general
class of belief aggregation rules; Banerjee and Compte (2023) investigate a problem where
individuals endogeneously choose the updating rules. Differently, this paper takes a more
reduced-form approach and starts with the outcome of communications, instead of studying
how beliefs evolve during the communication process. Other papers involve non-Bayesian
learning include Li and Tan (2020) studies a learning problem where individuals apply Bayes
rule in the local network; Eyster and Rabin (2010), Guarino and Jehiel (2013) and Dasaratha
and He (2020) looked at sequential social learning with non-Bayesian agents.

The second is the literature on social learning with model misspecification. The most
technically similar paper is Frick et al. (2023), which employs the p-divergence to construct
local martingales, similar to the role of the weighted p-entropy in this paper; their differences
were discussed in Section 6. Bohren (2016) and Bohren and Hauser (2021) study a sequential
social learning model in which individuals have misspecified beliefs about the learning envi-
ronments. Arieli et al. (2023) study a sequential social learning problem where individuals
can either overestimate or underestimate predecessors’ signal informativeness. Other related
papers include studies on social learning with model uncertainty, such as Hare et al. (2020),
Chen (2022), and Huang (2023), which explore social learning problems where individuals
consider multiple, possibly incorrect, models.
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10 Conclusion

This paper examines a non-Bayesian social learning problem where individuals may be misin-
formed about their data-generating processes. It extends the standard non-Bayesian learning
literature by formalizing the impact of misinformation on social learning. In this work, I
introduce a new concept—group irrationality—which captures scenarios where the social
learning outcome diverges from what would be achieved if every individual learned inde-
pendently. Contrary to the “wisdom of crowds" results, this paper demonstrates that group
irrationality is common across a wide range of typical aggregation rules. This prevalence
arises because social learning involves not just the aggregation of dispersed information but
also the spread of misinformation. Given that individuals may face different types of mis-
information, their interactions can lead to social beliefs that contradict each individual’s
private information, resulting in group irrationality. Notably, as the size of society increases,
the detrimental effects of misinformation become more pronounced, making it more difficult
to guarantee correct learning. In terms of future research, it would be interesting to explore
group irrationality in various learning contexts. For instance, the paper mostly focuses on
aggregation rules that resemble a generalized average, thus it is natural to examine other
class of aggregation rules; this paper looks at a passive learning problem, but we could also
look at active learning problems where data are endogenous etc.
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A Proofs

A.1 Auxiliary Results

I first present a lemma about the properties of the weighted p-entropy.

Lemma 1. (Properties of the weighted p-entropy) For all θ ̸= θ′, we have:

(i) Dw
p (θ′, θ) → Dw

0 (θ′, θ) ≡ Iw (θ)− Iw (θ′) as p→ 0,

(ii) Dw
p (θ′, θ) > Dw

q (θ′, θ) whenever p > q.

Proof. (i) For simplicity in notation, I denote by xi = l̂i (si|θ′) /l̂i (si|θ). From L’ Hopital’s
rule, we have

lim
p→0

Dw
p (θ′, θ) = lim

p→0

1

p
× E log

(
n∑

i=1

wi × xpi

)
= lim

p→0
E
(∑n

i=1wi × xpi log xi∑n
i=1wi × xpi

)
=

n∑
i=1

wi × log xi = Dw
0 (θ′, θ) .

(ii) Suppose that p > q, then Jensen’s inequality implies that

Dw
p (θ′, θ) =

1

p
E log

(
n∑

i=1

wi × xpi

)
=

1

p
E log

(
n∑

i=1

wi × x
q×p/q
i

)

>
1

p
E log

[
n∑

i=1

wi × xqi

]p/q
=

1

q
E log

[
n∑

i=1

wi × xqi

]1/q
= Dw

q (θ′, θ) ,

where the inequality holds strictly because there is no identification problem, i.e., l̂i (·|θ) ̸=
l̂i (·|θ′) for all θ ̸= θ′ and all i.

Lemma 1 (i) says that the weighted relative entropy approximates the weighted p-entropy
when p is near 0; Lemma 1 (ii) says that the weighted p-entropy is monotonic in p. We have
the following corollary.

Corollary 3. (Relation to the weighted relative entropy) For all θ ̸= θ′ and p > 0 > q, we
have:

θ ⪰w
p θ

′ =⇒ θ ≻w
0 θ

′ =⇒ θ ≻w
q θ

′,

where ≻w
0 is the strict order induced by the weighted relative entropy.

From Corollary 3, ⪰w
p may be incomplete when p > 0 since it becomes more difficult for

a state to dominate another state, and hence some states may not be comparable; similarly,
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⪰w
p may be intransitive when p < 0 since it is easier for the dominance relation to hold, so

it is possible that two states strictly dominate each other.

A.2 Proof of Theorem 1 (i)

Proof of the “only if “ direction.

To prove this direction, I first prove the following lemmas.

Lemma 2. Whenever µt converges, the social belief vt and every individual’s posterior µi,t

all converge to the same Dirac belief δθ except for P-null events.

Proof. Suppose that µt converges to some limit µ∞ = (µ1,∞, ..., µn,∞). From the continuity of
F , we have vt = F (µt) → F (µ∞) ≡ v∞, so vt also converges. Recall that µi,t = BUi (vt, si,t),
and there exist signals that alter the likelihood ratio between any two states, so we must
have v∞ = δθ for some θ. Therefore, µi,∞ = v∞ = δθ for all i.

Lemma 3. Whenever vt converges to some Dirac belief δθ, then we have θ ∈ Θw
p except for

P-null events.

Proof. Suppose instead that θ /∈ Θw
p , i.e., there exists another state θ′ ̸= θ such that θ ⪰̸w

p θ
′,

that is,

1

p
E log

(
n∑

i=1

wi ×

(
l̂i (si|θ′)
l̂i (si|θ)

)p)
> 0. (15)

From Assumption 1, we know that

vt+1 (θ
′) = F (BU1 (vt, s1,t) , ..., BUn (vt, sn,t)) (θ

′) ∼

∑wi ×

 vt (θ
′) l̂i (si,t|θ′)∑

θ̂ vt

(
θ̂
)
l̂i

(
si,t|θ̂

)
p1/p

∼ vt (θ
′)

[∑
wi ×

(
l̂i (si,t|θ′)
l̂i (si,t|θ)

)p]1/p
as vt (θ) → 1. (16)

Therefore, for all ε > 0, there exists some δ > 0 such that if vt (θ) ≥ 1− δ, then

vpt+1 (θ
′)

vpt (θ
′)×

[∑
wi ×

(
l̂i(si,t|θ′)
l̂i(si,t|θ)

)p] ∈ [exp (−|p| × ε) , exp (|p| × ε)] , (17)
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which implies that

log [vt+1 (θ
′)] ≥ log [vt (θ

′)] +
1

p
log

[
n∑

i=1

wi ×

(
l̂i (si,t|θ′)
l̂i (si,t|θ)

)p]
− ε. (18)

I then show that vt can’t converge to δθ with a strictly positive probability. Denote by
Xt = log [vt (θ

′)]. When vt → δθ we must have Xt → −∞. Therefore, P (vt → δθ) >

0 only if P (Xt → −∞) > 0, which implies that there exists some t0 < ∞ such that
P (Xt ≤ −C for all t > t0) > 0, where C is a positive constant. However, on event E ≡
{Xt ≤ −C for all t > t0}, we almost surely have

1

t− t0
Xt ≥

1

t− t0
Xt0 +

1

t− t0
×

t∑
t′=t0+1

1

p
log

[
n∑

i=1

wi ×

(
l̂i (si,t|θ′)
l̂i (si,t|θ)

)p]
− ε

→1

p
E log

[
n∑

i=1

wi ×

(
l̂i (si,t|θ′)
l̂i (si,t|θ)

)p]
− ε as t→ ∞.

Here, we can choose ε to be sufficiently small such that 1
p
E log

[∑n
i=1wi ×

(
l̂i(si,t|θ′)
l̂i(si,t|θ)

)p]
>

ε > 0. In this case, we almost surely have Xt → +∞, which implies that E can only be
a null event. Therefore, when θ /∈ Θw

p , we must have P (vt → δθ) = 0. As a consequence,
whenever vt → δθ, we must have θ ∈ Θw

p except for null events.

The only if direction of Theorem 1 (i) follows directly from Lemmas 2 and 3.

Proof of the “if” direction.

Lemma 4. Let X be a bounded random variable. Suppose that E logX < (or >) 0, then
there exists some ρ > 0 such that EXρ < (or >) 1.

Proof. Since X is bounded, we can apply the dominated convergence theorem and get

lim
ρ→0+

E
(
Xρ − 1

ρ

)
= E

(
lim
ρ→0+

Xρ − 1

ρ

)
= E

(
lim
ρ→0+

Xρ × logX

)
= E logX < (or >) 0.

So, there exists ρ > 0 such that E
(

Xρ−1
ρ

)
< (or >) 0, or EXρ < (or >) 1.

Now we start proving the “if” direction. Suppose that θ ∈ Θ̂w
p , then we have

1

p
E log

(
n∑

i=1

wi ×

(
l̂i (si,t|θ′)
l̂i (si,t|θ)

)p)
< 0 for all θ′ ̸= θ. (19)
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We want to show that µi,t will converge to δθ with positive probability. We first consider the
case where p is positive.

Case 1: Suppose that p > 0. Then Lemma 4 and (19) imply that there exists some ρ > 0

such that

E

(
n∑

i=1

wi ×

(
l̂i (si|θ′)
l̂i (si|θ)

)p)ρ

< 1 for all θ′ ̸= θ.

Then (17) implies that for all q > 0, there exists some ε > 0 such that when vt ∈ Bε (δθ) ≡
{v : v (θ) ≥ 1− ε}, we have

vpρt+1 (θ
′) ≤ vpρt (θ′)× (1 + q)

[
n∑

i=1

wi ×

(
l̂i (si,t|θ′)
l̂i (si,t|θ)

)p]ρ
.

Lemma 5. There exists ε′ > 0 such that when v1 ∈ Bε′ (δθ), we have P (vt → δθ) > 0.

Proof. For some ε > 0, we define a stopping time T = inf {t : vt /∈ Bε (δθ)}, which is the
first time that vt escapes from Bε (δθ), and define Yt(θ′) = vpρt∧T (θ

′). From the fact that
E
(∑n

i=1wi ×
(

l̂i(si|θ′)
l̂i(si|θ)

)p)ρ
< 1, there exists some q > 0 such that E

(∑n
i=1wi ×

(
l̂i(si|θ′)
l̂i(si|θ)

)p)ρ
<

1
1+q

. Therefore, when ε is sufficiently small, we have

E (Yt+1 (θ
′) |Ft) ≤ Yt (θ

′) ,

so {Yt (θ′)} is a bounded and nonnegative supermartingale and thus converges to some limit
random variable Y∞ (θ′). We also have

P (YT (θ′) ≥ εpρ) ≤ E (YT (θ′))

εpρ
≤ Y1 (θ

′)

εpρ
≤
(
ε′

ε

)pρ

, (20)

where the equality comes from Markov inequality and optional stopping theorem.

P (T <∞) ≤ P (∪θ′ ̸=θ {YT (θ′) ≥ εpρ}) ≤
∑
θ′ ̸=θ

P (YT (θ′) ≥ εpρ) ≤ |Θ| ×
(
ε′

ε

)pρ

(21)

Suppose ε′ is sufficiently small relative to ε and ε itself is also sufficiently small, then we have
P (T <∞) < 1, and hence P (T = ∞) > 0, which implies P (vt ∈ Bε (δθ) for all t ≥ 0) > 0.
On {T = ∞}, vt is trapped in Bε′ (δθ) forever and vt (θ

′) almost surely converges. From
Lemma 2, the only possible limit for vt is δθ, so we must have P (vt → δθ) > 0.

By Assumption 2, for all v1 ∈ ∆++ (Θ), vt enters Bε′ (δθ) with a strictly positive proba-
bility, so for all v1 ∈ ∆++ (Θ), we have P (vt → δθ) > 0.
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Case 2: Suppose that p < 0. The case is similar to the first case. The only change is that
the local supermartingale takes a different form. When p < 0, we have

E log

 n∑
i=1

wi

(
l̂i (si|θ)
l̂i (si|θ′)

)|p|
 > 0 ⇒ E log

 1∑n
i=1wi

(
l̂i(si|θ)
l̂i(si|θ′)

)|p|
 < 0.

Lemma 4 implies that there exists some ρ > 0 such that

E

 1∑n
i=1wi ×

(
l̂i(si|θ)
l̂i(si|θ′)

)|p|


ρ

< 1.

From (16), we know that as vt (θ) → 1, we have

vt+1 (θ
′)
|p|ρ ∼ vt (θ

′)
|p|ρ ×

 1∑n
i=1wi ×

(
l̂i(si|θ)
l̂i(si|θ′)

)|p|


ρ

. (22)

We now define Zt (θ
′) = vt∧T (θ′)|p|ρ and can show that {Zt (θ

′)} is a supermartingale. The
rest of the proof is almost identical to the proof of Case 1.

A.3 Proof of Theorem 1 (ii)

Proof. (i) The “if” direction: Suppose that beliefs almost surely don’t converge, then from
Theorem 1 (i), we have Θ̂w

p = ∅. Note that Θw
0 ̸= ∅, where Θw

0 denotes the minimizer of
the weighted relative entropy, so we must have p ≥ 0 from Corollary 3. (ii) The “only if”
direction: Suppose Θw

p = ∅ and p > 0, then beliefs can’t converge from Theorem 1 (i).

A.4 Proof of Theorem 1 (iii)

Proof. (i) The “if” direction: Suppose that µt can converge to multiple limit points. Theorem
1 (i) implies that |Θw

p | > 1. Suppose that p > 0. Corollary 3 implies that for all θ ∈ Θw
p , we

have θ ≻w
0 θ′ for all θ′ ̸= θ. Notice that there is at most one ≻w

0 -maximizer, so there is at
most one ⪰w

p -maximizer for all p > 0, that is, |Θw
p | ≤ 1 for p > 0. As a consequence, we can

only have p < 0. (ii) The “only if” direction: suppose that |Θ̂w
p | > 1, which is only possible

when p < 0, then Theorem 1 (i) implies that for every θ ∈ Θ̂w
p , we have µi,t → δθ for all i

with a positive probability.
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A.5 Proof of almost sure convergence in Example 9

Claim. In Example 9, when x is large enough, we have µi,t → δγ for all i almost surely.

Proof. Denoting by Ft := σ (s0, ..., st−1), we notice that

E [log vt+1 (γ) |Ft]

= log vt (γ) + E log

1

2

l̂1 (s1t|γ)∑
θ̂∈Θ vt

(
θ̂
)
l̂1

(
s1t|θ̂

) +
1

2

l̂2 (s2t|γ)∑
θ̂∈Θ vt

(
θ̂
)
l̂2

(
s2t|θ̂

)
 (23)

≥ log vt (γ) +
1

2
E log

 l̂1 (s|γ)∑
θ̂∈Θ vt

(
θ̂
)
l̂1

(
s|θ̂
)
+

1

2
E log

 l̂2 (s|γ)∑
θ̂∈Θ vt

(
θ̂
)
l̂2

(
s|θ̂
)


≥ log vt (γ) + min
v∈∆(Θ)

1
2
E log

 l̂1 (s|γ)∑
θ̂∈Θ v

(
θ̂
)
l̂1

(
s|θ̂
)
+

1

2
E log

 l̂2 (s|γ)∑
θ̂∈Θ v

(
θ̂
)
l̂2

(
s|θ̂
)
 .

(24)

Denote by g (v) := 1
2
E log

(
l̂1(s|γ)∑

θ̂∈Θ v(θ̂)l̂1(s|θ̂)

)
+ 1

2
E log

(
l̂2(s|γ)∑

θ̂∈Θ v(θ̂)l̂2(s|θ̂)

)
. Expanding the ex-

pression of g, we get

g (v) =
1

2
log

v (α)x+ v (β) 1
2
+ v (γ) 2

3

2/3
+

1

2
log

v (α) (1− x) + v (β) 1
2
+ v (γ) 1

3

1/3

+
1

2
log

v (α) 1
2
+ v (β)x+ v (γ) 2

3

2/3
+

1

2
log

v (α) 1
2
+ v (β) (1− x) + v (γ) 1

3

1/3
.

It is easy to verify that the minimizing v must satisfy v (α) = v (β) = 1−v(γ)
2

. Substituting
v (α) and v (β), we get

min
v∈∆(Θ)

g (v) = min
v(γ)∈[0,1]

(
log

1
4
+ 1

2
x+

(
5
12

− 1
2
x
)
v (γ)

2/3
+ log

3
4
− 1

2
x+

(
1
2
x− 5

12

)
v (γ)

1/3

)
.

It can be shown that when x is sufficiently close to 1 (e.g., x = 9/10), the minimizer is
v (γ) = 1. In this case, we have minv∈∆(Θ) g (v) = 0. From (24), when x is sufficiently large,
we have

E [log vt+1 (γ) |Ft] ≥ log vt (γ) + min
v∈∆(Θ)

g (v) = log vt (γ) ,

so {log vt (γ)} constitutes a non-positive submartingale. Applying the martingale conver-
gence theorem, we know that log vt (γ) converges almost surely. Besides, the only possible
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limit is v∞ (γ) = 1, so vt → δγ almost surely, which implies that µi,t → δγ almost surely.

A.6 Proof of Proposition 2

The first part is straightforward. In particular, if a belief aggregator has zero degree, it is
easy to see that group irrationality occurs.15 The proof thus focuses on the second part of
Proposition 2 and shows that all regular aggregators with non-zero degree are susceptible to
strong group irrationality.

To prove this claim, it suffices to show that there exist innocuous model perceptions
l̂ =

{
l̂1, ..., l̂n

}
and some state θ ̸= θ∗ such that: (i) when p > 0, we have θ∗ ⪰̸w

p θ, and (ii)
when p < 0, we have θ ≻w

p θ∗.16 The proof is by construction. Suppose Θ = {θ1, ..., θK+1}.
Without loss of generality, suppose θ∗ = θ1. I construct a signal structure such that the
number of signals is equal to the number of states, so Si =

{
s1, ..., sK+1

}
and

l̂i (sj|θk) =

εki j ̸= k

1−Kεki j = k
, (25)

where εk is a sufficiently small number. We have the following lemma.

Lemma 6. For all ε1i ∈ (0, 1), there exists some ε2i , ..., ε
K+1
i ∈ (0, εi) such that Θi = {θ∗}.

Proof. Fixing ε1, we have

Ri (θ
∗)−Ri (θk) =li

(
s1i |θ∗

)
log

1−Kεki
ε1i

+ li
(
ski |θ∗

)
log

εki
1−Kε1i

+
∑
j ̸=1,k

li
(
sji |θ∗

)
log

1−Kεki
1−Kε1i

→ −∞ as εki → 0.

Therefore, when ε2i , ..., ε
K+1
i are sufficiently small relative to ε1i , θ∗ is the unique state that

minimizes the relative entropy for individual i.

Lemma 6 ensures that we can construct an innocuous model perceptions with form (25).
For convenience, we consider a particular selection of feasible ε2i , ..., ε

K+1
i in Lemma 6 and

let εki (ε1i ) denote a continuous function such that Θi = {θ∗}.17 Suppose that all individuals
15As discussed in the main text, asymptotic beliefs are characterized by Θw

0 —the set of states that minimize
the weighted relative entropy—which needn’t minimize the relative entropy for any individual.

16This is because by Theorem 1, we know that (i) implies θ∗ /∈ Θw
p , so beliefs will not converge to the

point-mass on θ∗, and (ii) implies that there is another state θ ∈ Θ̂w
p , so beliefs will settle on θ with a strictly

positive probability.
17The existence is ensured by Michael selection theorem.
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hold identical innocuous perception in the form of (25). When p > 0, we have

Dw
p (θk, θ

∗) =
1

p
E log

(
n∑

i=1

wi ×

(
l̂i (si|θk)
l̂i (si|θ∗)

)p)

=
1

p

∑
s∈S

l (s|θ∗)× log

( ∑
i:si=s1

wi ×
(
1−Kεki (ε

1
i )

ε1i

)p

+
∑

i:si=sk

wi ×
(

εki
1−Kε1i

)p

+
∑

i:si ̸=s1,sk

wi ×
(
1−Kεki (ε

1
i )

1−Kε1i

)p
→ +∞ as ε11, ..., ε

1
n → 0.

This implies that when p > 0, we have θ∗ ⪰̸w
p θk for all k. Therefore, θ∗ /∈ Θw

p , implying that
beliefs will not converge to the point-mass on θ∗ by Theorem 1.

Case 2: Symmetrically, when p < 0, we also have

Dw
p (θ∗, θk) → −∞ as ε11, ..., ε

1
n → 0

This implies that when p < 0, we have θk ≻w
p θ∗ for all k. Also note that θ∗ ≻w

0 θk′ for all
k′, so we have θk ≻w

p θk′ for all k′ by Corollary 3. Therefore, θk ∈ Θ̂w
p , and hence beliefs will

converge to the point-mass on θk with a positive probability. Combing previous two cases,
we see that any belief aggregator, regardless of positive or negative p, is susceptible to strong
group irrationality.

A.7 Proof of Proposition 3

Proof. (i) The “if” direction: By definition, for all θ ∈ Θ, we have

log

(
µi,t+1 (θ)

µi,t+1 (θ∗)

)
= log

(
F (µ1,t, ..., µn,t) (θ)

F (µ1,t, ..., µn,t) (θ∗)

)
+ log

(
l̂i (si,t+1|θ)
l̂i (si,t+1|θ∗)

)
.

Assumption 3 implies that

max
i

log

(
µi,t+1 (θ)

µi,t+1 (θ∗)

)
≤ max

i
log

(
µi,t (θ)

µi,t (θ∗)

)
+max

i
log

(
l̂i (si,t+1|θ)
l̂i (si,t+1|θ∗)

)
.

Suppose θ∗ ⪰∞ θ for all θ ̸= θ∗, then the strong law of large numbers implies that maxi log
(

µi,t(θ)

µi,t(θ∗)

)
→

−∞ almost surely for all θ ̸= θ∗, which further implies that µi,t (θ
∗) → 1 almost surely for

all i. (ii) The “only if” direction: Suppose instead that there exists some θ ̸= θ∗ such that
θ∗ ⪰̸∞ θ, then we have D∞ (θ, θ∗) > 0. Note that Dw

p (θ, θ′) → D∞ (θ, θ′) as p → +∞, so
we also have Dw

p (θ, θ∗) > 0 for some p < +∞ and w ∈ ∆++ (N). Therefore, θ∗ /∈ Θw
p , and
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hence beliefs can’t converge almost surely to δθ∗ by Theorem 1.

A.8 Proof of Corollary 2

Proof. Let θ be any state that is not the true state. Let Xi ≡ log
(

l̂(si|θ)
l̂(si|θ∗)

)
. By assumption,

Xi’s are i.i.d. Denote by X and X the minimum and maximum possible values of Xi, so we
have X < 0 < X. Let ε be a number between 0 and X, and we have

D∞ (θ, θ∗) = E
(
max

i
Xi

)
≥ P

(
max

i
Xi ≤ ε

)
X + P

(
max

i
Xi > ε

)
ε

= Pn (Xi ≤ ε)X + [1− Pn (Xi ≤ ε)] ε→ ε > 0 as n→ +∞.

Therefore, we have θ∗ ⪰̸∞ θ when n is sufficiently large. By Proposition 3, l̂ is not robustly
innocuous.

A.9 Proof of Proposition 4

I define the generalized weighted p-entropy as follows

Dp
w (θ′, θ;ψ) =

1

p
× E log

(
n∑

i=1

wi ×
(
ψi (si|θ′)
ψi (si|θ)

)p
)
.

It is easy to verify that Theorem 1 still holds. Suppose that ψi (s|θ) = l̂i
α
(s|θ). Then for all

θ′, θ ∈ Θ, we have

1

α
Dp

w (θ′, θ;α) =
1

αp
× E log

(
n∑

i=1

wi ×

(
l̂i (si|θ′)
l̂i (si|θ)

)αp)
α → 0−→

n∑
i=1

wi × E log

(
l̂i (si|θ′)
l̂i (si|θ)

)
= Iw (θ)− Iw (θ′) , (26)

where Dp
w (θ′, θ;α) represents the generalized weighted p-entropy with α-Bayes’ rule. Let

⪰w
p,α denote binary relation induced by it. Therefore, (26) implies that when α is sufficiently

small, ⪰w
p,α and ⪰w

0 induces the same ordering over Θ—that is, θ′ ⪰w
p,α θ if and only if

θ′ ⪰w
0 θ for all θ′, θ ∈ Θ. From the assumption that Iw (θ) is distinct for all states, we

have Θ∗∗
0 = Θ∗

0 = {θ0}. Therefore, when α is small, Θ∗∗
p,α = Θ∗

p,α = {θ0}, where Θ∗
p,α (and

Θ∗∗
p,α) represents the (strict) minimizer of the generalized weighted p-entropy with power α.

From Theorem 1, we know that beliefs converge to δθ0 with a strictly positive probability. It
remains to show that the convergence happens with probability 1.
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Lemma 7. When α is sufficiently small, there exists some η > 0 and ε > ε′ > 0 such that

P (vt ∈ Bε (δθ0) for all t ≥ 1|v1 ∈ Bε′ (δθ0)) ≥ η, (27)

and for all θ ̸= θ0

P
(
max

{
vt

(
θ̂
)
: θ̂ ≻w

0 θ
}
≥ ε for some t <∞|v1 ∈ Bε′ (δθ)

)
≥ η, (28)

where ≻w
0 denotes the strict ranking induced by the weighted relative entropy, and θ0 is the

minimizer of the weighted relative entropy.

Proof. The proof for (27) comes directly from Theorem 1 which implies that vt → δθ0 with
a strictly positive probability. To prove (28), we follow a similar approach as in the proof
of Theorem 1. Choose any state θ ̸= θ0 and let θ′ be another state such that θ ≻w

0 θ′. As
vt (θ) → 1, we have

vpt+1 (θ
′) ∼ vpt (θ

′)×

[
n∑

i=1

wi

(
l̂i (si,t|θ′)
l̂i (si,t|θ)

)αp]
.

Belwo, I focus on the case where p > 0 as the case where p < 0 follows exactly symmetrically
as in Theorem 1’s proof. When p > 0, we have E

[∑n
i=1wi

(
l̂i(si|θ′)
l̂i(si|θ)

)αp]
< 1 when α is suffi-

ciently small.18 Define T = inf {t : vt /∈ Bε (δθ)}, so Yt (θ′) = vpt∧T (θ′) is a super-martingale.
Following the approach as in the proof of Theorem 1, we have

P (∪θ≻0θ′ {YT (θ′) ≥ εp}) ≤ |Θ| ×
(
ε′

ε

)p

.

By definition, θ doesn’t minimizes the weighted relative entropy—and hence doesn’t minimize
the weighted p entropy with small α—Theorem 1 implies that beliefs cannot converge to the
point-mass on θ, thus P (T <∞) = 1. Therefore, we have P (∪θ′ ̸=θ {YT (θ′) ≥ εp}) = 1, which
implies that

P (∪θ′≻0θ {YT (θ′) ≥ εp}) ≥ 1− P (∪θ≻0θ′ {YT (θ′) ≥ εp}) ≥ 1− |Θ| ×
(
ε′

ε

)p

. (29)

Letting ε′ = ε

(|Θ|+1)1/p
, the R.H.S. of (29) becomes 1

|Θ|+1
. Let η = 1

|Θ|+2
, so when ε is

18Let f (m) = E
[∑n

i=1 wi

(
l̂i(si|θ′)
l̂i(si|θ)

)m]
. It is easy to verify that f (0) = 1 and f ′ (0) = Dw

0 (θ′, θ) < 0, so

f (m) < 1 when m is small.
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sufficiently small,

P
(
max

{
vt

(
θ̂
)
: θ̂ ≻w

0 θ
}
≥ ε for some t <∞|v1 ∈ Bε′ (δθ)

)
≥ η > 0,

so the claim is proved.

For any history Ft = σ (s1, ..., st), there exists some θ1 ∈ Θ such that vt (θ1) ≥ 1
|Θ| > ε,

when ε is sufficiently small. Assumptions 3 and 4 jointly imply that

P (vt1 ∈ Bε′ (δθ1) for some t1 ≥ t|Ft) ≥ δ.

Lemma 7 implies that there exists some θ2 ≻w
0 θ1 such that

P (vT1 (θ2) ≥ ε for some T1 ≥ t1|vt1 ∈ Bε′ (δθ1)) ≥ η.

From Assumptions 3 and 4 again, we get

P (vt2 ∈ Bε′ (δθ2) for some t2 ≥ T1|vT1 (θ2) ≥ ε) ≥ δ.

In summary, beliefs transit from Bε′ (δθ1) to Bε′ (δθ2) with probability ηδ > 0. After repeating
the process k times, beliefs transit sequentially from the neighborhoods of Dirac beliefs on
θ1, θ2, ..., θk, where θk ≻w

0 ... ≻w
0 θ1 and each transit occurs with probability at least ηδ > 0.

Because |Θ| is finite, beliefs will enter Bε′ (δθ0) after at most |Θ| − 1 rounds, and it will
remain inside with probability ≥ η from (27). So, for all Ft, we have

P (vt′ ∈ Bε′ (δθ0) for some t′ ≥ t|Ft) ≥ (ηδ)|Θ|−1 ⇒ P (vt → δθ0|Ft) ≥ (ηδ)|Θ| > 0.

Levy’s 0-1 Law then implies that P (vt → δθ0) = 1.
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